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This paper presents the direct numerical simulation (DNS) of wavepacket evolution
and breakdown in a Blasius boundary layer. The study covers the physical, spectral
and structural aspects of the whole transition process, whereas previous studies have
tended to focus on issues of a more limited scope. The simulations are modelled
after the experiments of Cohen, Breuer & Haritonidis (J. Fluid Mech., vol. 225, 1991,
p. 575). The disturbance wavepackets are initiated here by a u-velocity and a v-velocity
delta pulse. They evolve through a quasi-linear growth stage, a subharmonic stage
and a strongly nonlinear stage before breaking down into the nascent turbulent spots.
Pulse-initiated wavepackets provide a plausible model for naturally occurring laminar–
turbulent transition because they contain disturbances in a broadband of frequencies
and wavenumbers, whose sum of interactions determines the spatio-temporal progress
of the wavepackets. The early development of the wavepackets accords well with
established linear results. The ensuing subharmonic evolution of the wavepackets
appears to be underpinned by a critical-layer-based mechanism in which the x-phase
speeds of the fundamental two-dimensional and dominant three-dimensional waves
with compatible Squire wavenumbers are approximately matched. Spectral data over
the bulk of the subharmonic stage demonstrate good consistency with the action of
a phase-locked theory recently proposed by Wu, Stewart & Cowley (J. Fluid Mech.,
vol. 590, 2007, p. 265), strongly suggesting that the latter may be the dominant
mechanism in the broadband nonlinear evolution of wavepackets. The dominant two-
dimensional and three-dimensional waves are observed to be spontaneously evolving
towards triad resonance in the late subharmonic stage. The simulations reproduce
many key features in the experiments of Cohen et al. (1991) and Medeiros & Gaster
(J. Fluid Mech., vol. 399, 1999b, p. 301). A plausible explanation is also offered
for the apparently ‘deterministic’ subharmonic behaviour of wavepackets observed by
Medeiros & Gaster. The strongly nonlinear stage is signified by the appearance of low-
frequency streamwise-aligned u-velocity structures at twice the spanwise wavenumber
of the dominant three-dimensional waves, distortion of the local base flow by the
strengthening primary Λ-vortex and rapid expansion of the spanwise wavenumber
(β) spectrum. These are in broad agreement with the experimental observations of
Breuer, Cohen & Haritonidis (J. Fluid Mech., vol. 340, 1997, p. 395). The breakdown
into incipient turbulent spots occurs at locations consistent with the experiments of
Cohen et al. (1991). A visualization shows that the evolving wavepackets comprise
very thin overlapping vorticity sheets of alternating signs, in stacks of two or three.
Strong streamwise stretching of the flow at the centre of the wavepacket in the late
subharmonic and strongly nonlinear stages promotes the roll-up and intensification
of the vorticity sheets into longitudinal vortices, whose mutual induction precedes the
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breakdown of the wavepacket. The critical layer of the dominant two-dimensional and
oblique wave modes reveals the progressive coalescence of a strong pair of vortices
(associated with the Λ-vortex) during the subharmonic stage. Their coalescence
culminates in a strong upward burst of velocity that transports lower momentum
fluid from below the critical layer into the upper boundary layer to form a high shear
layer in the post-subharmonic stage.

1. Introduction
The boundary layer is a very critical region of a flow past a solid body. The state

of the boundary layer, whether laminar or turbulent, directly affects the skin friction
and heat transfer from the surface and the onset of flow separation under adverse
pressure conditions and so on. A vast body of knowledge has been gained in the
last four decades of the complex process of transition from laminar to turbulent
state. This knowledge pertains largely to the behaviour of regular wave systems
under laboratory conditions. The behaviour of more complex disturbances such as
those of wavepackets encountered in natural transition is less well understood. A
comprehensive knowledge of the latter will aid formulation of measures to delay or
slow down the process of transition and realize the benefits of laminar flow.

There are two main classes of transition in a boundary layer according to Morkovin
(1969). The first is the traditional Tollmien–Schlichting (TS) wave route whereby,
having been excited by a suitable receptivity mechanism, the disturbance waves first
grow linearly as TS waves. This is followed by nonlinear wave interactions, when
the waves have acquired sufficient size, and then final breakdown to turbulence.
The second class is bypass transition, whereby the large initial amplitude of the
disturbance allows it to go into the nonlinear breakdown stage directly and proceed to
turbulence from there. Nevertheless, it is the linear mechanism that ultimately drives
disturbance growth (Reddy & Henningson 1993) – derivation of the Reynolds–Orr
equation shows that the nonlinear terms play no direct role in extracting energy
from the mean flow, although they play a role in redistributing energy among the
wave modes. Bypass transition has attracted considerable interest in recent years (see
Schmid & Henningson 2000 for a thorough review). However, in this study, we are
concerned primarily with transition initiated by small disturbances.

Our most comprehensive knowledge of the process of boundary-layer transitions
has been derived from system experiments with regular harmonic plane waves. For
two-dimensional TS waves with relatively large initial amplitude that exceeds 1 %
of the free-stream velocity, the waves evolve into a series of aligned Λ-shaped
three-dimensional structures that have the same frequency as the fundamental two-
dimensional wave. When the initial amplitude is small, the two-dimensional TS
harmonic wavetrain may grow linearly for a considerable distance before it also
develops into a series of Λ-shaped disturbance structures. These structures have a
staggered formation and a frequency that is about half the frequency (subharmonic)
of the two-dimensional TS waves. Once formed, the three-dimensional structures
or waves amplify rapidly to overtake the primary two-dimensional wave, so that
the disturbance wave field becomes effectively three-dimensional in a relatively short
distance. The large three-dimensional wave disturbances in turn distort the local mean
velocity profile, resulting in instantaneous profile inflexions and the formation of
high-shear layers. A rapid proliferation of higher wave harmonics precedes the
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breakdown to a chaotic or turbulent flow state. The two sequences of wave
development and breakdown are termed the K-type breakdown and subharmonic
breakdown, respectively. The subharmonic breakdown is also frequently termed the
C- or H-breakdown. The ‘C’ refers to Craik (1971), who proposed a theory based
on resonant interaction between the fundamental two-dimensional and a symmetric
pair of oblique waves to explain the appearance of subharmonic three-dimensional
wave structures in boundary layers. The ‘H’ refers to Herbert (1983), who subsequently
proposed a more generalized model of secondary instability to explain the appearance
of the subharmonic modes in boundary layers, as well as the appearance of
such structures in plane channel flow, where Craik’s model is inapplicable. In
Herbert’s theory, the development of subharmonic waves with wavelengths twice
the fundamental two-dimensional wavelength originates from principal parametric
resonance between the fundamental two-dimensional TS wave of finite amplitude
A2D and the oblique wave pair. Herbert’s model approximates the Craik’s model in
the limit of small A2D . A review of the experimental and theoretical background can
be found in Kachanov (1994) and Herbert (1988), respectively.

The theories and experiments for regular harmonic waves could not reproduce
the intermittence and spotty structures of naturally occurring turbulence. Natural
transition occurs in an environment in which the initiating disturbances are typically
non-homogeneous in space and time. Pulse-induced disturbances, which contain a
broad spectrum of wavenumbers and frequencies, are generally regarded as a better
representative of the disturbance sources for the study of natural transition process
(see Medeiros & Gaster 1999a). However, the broad spectrum of waves present also
poses considerable challenges in terms of modelling and analysis.

Vasudeva (1967) was probably the first to experiment with pulse-initiated
wavepackets in a transition study. However, he was unable to get satisfactory results
because of poor signal-to-noise problems. Gaster & Grant (1975) successfully studied
the evolution of wavepackets in a laminar boundary layer by applying an ensemble-
averaging technique to overcome the signal/noise problem. Furthermore, Gaster
(1975) presented a theoretical model of wavepacket evolution based on numerical
Fourier wave techniques. Both these studies concern the linear growth of wavepackets
before the onset of significant wave nonlinearity.

Cohen, Breuer & Haritonidis (1991) extended the experimental work done by
Gaster & Grant (1975) to cover the entire transition process of the wavepacket from
the linear growth stage through to the formation of the incipient turbulent spot. In
their experiments, the wavepackets were initiated by air pulses comprising a single
period of a 24 Hz sinusoid. The linear stage agreed very well with the measurements
of Gaster & Grant (1975). This was followed by a weakly nonlinear stage that
was characterized by the growth of oblique subharmonic waves whose frequencies
were about half that of the most-amplified two-dimensional TS waves. In a critical
comparison with linear stability theory, Cohen (1994) found that these waves started
to grow nonlinearly well ahead of the branch II neutral point of the fundamental
wave. Breuer, Cohen & Haritonidis (1997) subsequently carried out a more detailed
investigation of the strongly nonlinear stage and the breakdown of the wavepacket
into a turbulent spot. They found that the strongly nonlinear growth stage was
characterized by low-frequency waves with growing amplitudes, oblique waves with
increasing spanwise wavenumbers and higher harmonic waves with relatively lower
amplitudes. They also reported that the formation stage of the turbulent spot began
with the growth of high-frequency waves proceeding from the sums and differences
of fundamental and three-dimensional waves. A rapidly expanding cascade of waves
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and a loss of phase coherency that is indicative of a chaotic state precipitate the final
turbulent spot.

The process of subharmonic growth in wavepackets in a boundary layer was
the focus of Medeiros & Gaster (1999a). They concluded that the phase content
of the initial wavepacket could have a deterministic influence on the nonlinear
three-dimensional development of the wavepacket. Earlier, Shaikh & Gaster (1994)
and Shaikh (1997) had studied the transition caused by a point source generating
white noise as a model of natural transition. Similar to the wavepacket findings of
Breuer et al. (1997), the late nonlinear stage was characterized by the dominance
of low-frequency waves and localized bursts of high-frequency waves preceded the
formation of turbulent spots. However, the complexity of the continuous wave
stream prevents more detailed physical features of the breakdown process from being
extracted.

On the whole, there have been fairly limited numerical studies conducted on the
transition of wavepackets in boundary layers. The early numerical transition studies,
such as Fasel (1976) and Spalart & Yang (1987), were concerned with two-dimensional
harmonic wavetrains or resonating triads of harmonic waves. The first numerical
simulation of wavepacket evolution in a spatially developing Blasius boundary layer
was probably presented by Konzelmann & Fasel (1991). The simulation, which covered
the linear and early subharmonic growth stages, exhibits contour envelopes of the
wavepackets that are generally in good agreement with the experiments of Gaster &
Grant (1975), although the amplitudes in the simulations are larger than those in the
experiments. Bech, Henningson & Henkes (1998) carried out a comparative study
of the linear and nonlinear growth behaviour of localized disturbances in zero- and
adverse-pressure-gradient boundary layers. The spatially growing boundary layers
were approximated as temporally growing parallel shear flows by the artificial inclu-
sion of a body force in the mean-flow equation. They found that secondary instability
plays a less significant role in the nonlinear wave development for the adverse pressure
gradient cases due to the rapid growth of primary two-dimensional waves.

Henningson, Lundbladh & Johansson (1993) studied bypass transition from
localized disturbances in wall shear flows. The behaviour of turbulent spots in
plane Poiseuille and boundary layer flows was studied by Henningson, Spalart &
Kim (1987). The mature turbulent spot in the boundary layer has the appearance
of an arrowhead pointing in the stream direction, which is in agreement with the
experiments of Cantwell, Coles & Dimotakis (1978) and other researchers, whereas
the arrowhead-shaped turbulent spot in the Poiseuille flow points upstream. Singer
(1996) conducted the detailed simulation of turbulent spot behaviour in a boundary
layer. The turbulent spots in these studies were produced from strong localized
disturbances that effectively bypassed the linear and earlier nonlinear stages. Jacobs &
Durbin (2001) simulated boundary layer turbulent spots in a bypass-type transition
numerically.

Wavepacket simulation in boundary layers, as noted above, has hitherto been
largely focused on selective aspects of the transition process rather than on the whole
transition process from small seeded disturbances to final breakdown. Thus, large
initial disturbance amplitudes have frequently been used in studying the nonlinear
breakdown stage to reduce the evolution distance and time, while parallel-flow-type
approximation (using body force) has been applied in some cases to render the
problem periodic in the stream direction. These had been necessary to render the
size of the numerical problem within the means of the then available computational
resources. However, with continuous advances being made in computing speed, the
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advent of highly parallelized computing and the greatly reduced cost of memory
and data storage, computationally intensive simulation of wavepackets evolving in a
spatially extended boundary layer has become feasible.

This paper is concerned with a numerical study of the process of laminar–turbulent
transition of pulse-initiated wavepackets in a spatially growing Blasius boundary layer.
The simulation follows the evolution of an initially small disturbance wavepacket
from its pulsed inception, through the linear growth stage, the nonlinear secondary
instability stages and its final nonlinear breakdown into an incipient turbulent spot.
The simulation follows closely the conditions of Cohen et al.’s (1991) experiments,
which cover the whole transition process. Numerical simulation is able to provide
spatial details of the evolving wavepackets that could not be ascertained from
experiments and offers a comprehensive picture of the spectral and structural
evolution of the developing wavepackets leading up to the formation of the incipient
turbulent spot. Pulsed-induced wavepacket is the focus of the study because it presents
a good model for the type of broadband disturbances that one may encounter in
a natural transition scenario. The broadband character of a wavepacket offers a
central advantage in permitting natural selection of most dominant waves to operate
through the sum of its growth processes. This may be helpful in identifying the critical
waves and key processes that are involved at the various stages in natural transition.
This study was conducted to support related investigations into the behaviour of
disturbance wavepackets evolving over flexible panel arrays, where the effects of the
flexible arrays on the various stages of evolution and their cumulative consequences
on turbulent spot formation are examined. These will be reported in the future.

2. Numerical simulation
2.1. Numerical scheme

The numerical simulation is carried out by the direct numerical simulation (DNS)
code developed by Wang (2003) and Wang, Yeo & Khoo (2005) for the incompressible
Navier–Stokes equations:
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where i, k = 1, 2, 3 denote the streamwise (x), the wall normal (y) and spanwise
(z) coordinates of the Cartesian frame respectively. The perturbation form of the
Navier–Stokes equations (2.1) and (2.2) is obtained by setting c1 = c2 = 1.0, where
ūi denote the components of the base flow. Time integration of the Navier–Stokes
equations is accomplished by a fully implicit fractional-step algorithm, in which the
divergence-free condition is maintained by a pressure-correction procedure. Spatial
discretization is based on coordinate-transformed curvilinear finite volume with
second-order flux evaluation. Detailed resolution of the near-wall flow is achieved by
grid stretching. The implicit iterative implementation ensures there is good numerical
stability without artificially introduced dissipation. The overall numerical scheme is
second-order accurate in space and time. More details concerning the scheme and
grid may be found in the cited references. The base flow used in the present study
is the non-parallel Blasius boundary layer. The Reynolds number Re is based on
the free-stream velocity U∞, the displacement thickness δ0 of the boundary layer at
the reference location where the disturbance pulse is introduced and the kinematic
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viscosity of the fluid. The code has been extensively validated against published linear
and nonlinear wave results of Fasel, Rist & Konzelmann (1990) and Liu & Liu (1994)
in Wang et al. (2005), who carried out a comparative study of the evolution and
breakdown of harmonic wave triads over rigid and compliant membrane surfaces.
The non-perturbation version of the code has also been applied in the DNS study
of low-Reynolds-number turbulent channel flows over dimple arrays in Wang et al.
(2006).

2.2. Simulation of experimental conditions

The computational set-up closely emulates the experimental conditions of
Cohen et al. (1991). The computational domain spans 310 � X � 1510 in the
streamwise direction (corresponding to 0.72 m � x � 3.5 m in the experiments),
0 � Y � 54 (0.0 m � y � 0.25 m) in the wall normal direction and −172 � Z � 172
(−0.4 m � z � 0.4 m) in the spanwise direction. The (X, Y, Z) denotes the non-
dimensional Cartesian coordinates based on the reference length δ0 = 2.3182 × 10−3 m,
which is the displacement thickness of the boundary layer at the location X0 = 349.4,
where the disturbance is introduced (corresponding to x0 = 0.81 m for the same in the
experiments). The free-stream velocity is U∞ = 6.65 m s−1 and the kinematic viscosity
is υ = 1.49 × 10−5 m2 s−1. The Reynolds number Reδ = δU∞/υ at the excitation source
is 1034.6.

The initiating disturbance in Cohen et al.’s (1991) experiments was an air pulse
introduced at the wall via a perforated disk of 0.5 cm diameter (X-diameter =
2.16). The pulse of air was sustained over a single period of a 24 Hz sinusoid
(F = 106ωδ/Rδ = 50.8). Cohen et al. (1991) performed two sets of transition studies
using two different initiating source amplitudes. For the first or small-amplitude
case, the disturbance |u|max measured about 0.3 % at height y/δ =0.62 when the
wavepacket passed the first measurement station at x =160 cm (corresponding to
X = 690 here). The large-amplitude case had |u|max ≈ 0.6 % at x = 170 cm (X = 733).
They are designated as the S case and L case, respectively, for the ease of reference in
this paper. Owing to the small size of the experimental disturbance source, a delta or
point-velocity pulse having the same time modulation as the experiments is used to
initiate the wavepackets in the present simulation. Two cases are simulated here. The
initiating source is a u-velocity pulse applied at X0 = 349.4 on the wall in the first case
(termed the u-initiated case) and a v-velocity pulse in the second (the v-initiated case).
The two different modes of initiation are selected for the purpose of assessing if the
mode of initiation would make a significant difference to the overall evolution and
breakdown of the wavepacket. For both cases, the disturbance |u|max ≈ 0.4% when
the wavepacket arrives at X = 690 – this is intermediate in size between the S and L
cases of Cohen et al (1991).

A computational simulation is carried out in terms of the global length scale δ0.
The non-dimensional simulation time T = tU∞/δ0 is measured from the time of pulse
initiation. The frequency ω and the wavenumber (α, β) in the global/computational
length scale are related to the corresponding quantities in the local displacement
thickness length scale δ(x) by

ωδ = ω(X/X0)
1/2 = ω(x/x0)

1/2, (2.3a)

(α, β)δ = (α, β)(X/X0)
1/2 = (α, β)(x/x0)

1/2, (2.3b)

where the subscript δ denotes quantities in the local length scale δ(x).
Equations (2.1) and (2.2) govern the temporal–spatial evolution of the disturbance

velocity field (ui) = (u, v, w), which is assumed to have been duly non-dimensionalized.
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Figure 1. Disturbance wavepackets (u-initiated pulse) along the centreline (z =0) at height
y/δ ≈ 0.62 for different times, where δ denotes the local displacement thickness. Solid lines
are for grid 1170 × 47 × 81. Dot-dashed lines are for grids 1170 × 47 × 163 at T = 1310 and
1170 × 65 × 163 at T = 2046. R denotes ripple.

The disturbance velocity components are assumed to be zero at the inflow boundary
of the computational domain. The disturbance velocity was also approximated to be
zero at the top boundary, which is set at eight to ten boundary layer thicknesses
away from the wall. Centreline symmetry is not assumed here for the disturbance.
Periodic boundary conditions are imposed on the two side boundaries. This allows
non-symmetric disturbance modes, if any, to develop freely. A buffer domain (Liu &
Liu 1994) was instituted at the outflow boundary to allow the disturbances to pass
out of the computational domain without upstream reflection.

2.3. Computational grid

The disturbance wavepackets are simulated on a (x, y, z)-grid of 1170 × 47 × 81 for
the linear and early nonlinear growth stages. The disturbance field data are then
spline-interpolated onto a finer cross-sectional grid with 65 × 163 (y, z)-grid points
for the remaining simulation until the first appearance of the incipient turbulent spot.
The grid is uniform in both the streamwise and spanwise directions. The grid in the
wall-normal or y-direction is geometrically stretched to give good resolution to the
finer flow details near the wall. Similar stretched grids have been used by Wang et al.
(2005) in their study of wave breakdown. Das & Matthew (2001) also emphasized the
application of grid stretching to resolve unstable wave structures in their DNS study
of disturbance waves and turbulent spots. The finer cross-sectional grid is introduced
to ensure that the smaller-scale structures that develop during the later stages of
transition are adequately resolved.

Figure 1 shows the spatial–temporal development of the u-velocity component of
the u-initiated wavepacket along the centreline z = 0 at the height of y/δ = 0.62. The
results at the non-dimensional time T = 1310 compare the wave in the very early
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nonlinear stage (|u|max ≈ 0.6%) with a similar wave computed with twice the number
of grid intervals in the spanwise direction. The solid line shows the streamwise
disturbance based on the original grid of 1170 × 47 × 81, while the dot-dashed line
shows the results on the finer grid. The two waves are almost identical in their details.
The solution on the initial lower-resolution 47 × 81 (y, z)-grid was next interpolated
onto a refined 65 × 163 (y, z)-grid and simulation was carried out on the refined grid
thereafter. The results from the original and refined grids at the subsequent time of
T = 2046 are compared in figure 1. The waves are in their mid-nonlinear growth phase
at this time (with a clearly defined Λ-vortex and |u|max ≈ 3.4 %; see later results). The
very small differences in the two waves indicate that the original lower-resolution grid
should be adequate up to the mid-nonlinear stage at least. We note that the very
small differences could also be contributed by numerical errors introduced during grid
interpolation. These small differences can have no significant effects on the dynamics
and process of wavepacket evolution and breakdown, which is governed by much
larger-scale processes at this stage. The x-grid of 1170 was found to be generally
adequate throughout in capturing the wave details. Grid studies show that the finer
(y, z)-grid is able to capture the breakdown process in all its essential details. In
this regard, adequate spanwise resolution was found to be particularly crucial for
capturing the rapidly expanding spanwise wavenumber (β) spectrum during the late
nonlinear stage, just prior to the final breakdown.

The final breakdown process exhibits typical traits of a dynamical system entering a
state of chaos, whereby all perturbations or errors are rapidly amplified. Nevertheless,
the apparent disorder is governed by certain generic (robust) dynamics on an inertial
submanifold of low dimension in phase space, and the properties of such a system
may frequently be characterized in statistical and spectral terms. In this study, the
finer grid was found to make a notable difference only during the brief moments
of wavepacket breakdown, as signified by a burst of fine structures – here the rates
may be slightly enhanced. An extensive discussion of dynamical system issues in
fluid dynamics and turbulence, including aspects concerning its approximation and
numerical simulation, is given by Holmes, Lumley & Berkooz (1996).

3. Results and discussions
In this section, we present a comprehensive numerical study of the continuous

transition process of the wavepackets from their pulsed inception to their breakdown
into the incipient turbulent spots. The physical, spectral and vortical aspects of the
evolution process are examined.

3.1. Analysis of spatial evolution

Figures 1 and 2 show the streamwise (u-) velocity component along the centreline
(z =0) of the disturbance wavepacket (u-initiated case) at different time stages. From
figure 1, it can be seen that the leading and trailing edges of the wavepacket travel
at speeds of about 0.435U∞ and 0.349U∞, respectively, during the linear and early
nonlinear evolving stages. These are close to the values of 0.44U∞ and 0.36U∞
obtained by Gaster (1975) from Fourier synthesis of Orr–Sommerfeld solutions. The
disturbance pulse was initiated at Re =851 by Gaster (1975) whereas the present
wavepacket is initiated at Reδ ≈ 1000.

Figure 1 shows that the wavepacket is composed of two wave cycles at the early
time of T = 260. With differential leading and trailing edge speeds, it expands spatially
to about five wave cycles by time T = 930. The wavepacket develops very much in
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Figure 2. Disturbance wavepackets (u-initiated pulse) along the centreline at y/δ ≈ 0.62 for
times (a) T = 2417, (b) T =2674. Grid 1170 × 65 × 163.

accordance with the experimental and theoretical results of Gaster & Grant (1975)
and Gaster (1975) until T = 1280, where the disturbance wave amplitude just crosses
the 0.5 % mark. The first sign of wave distortion appears at about T =1310, taking
the form of a small ripple (denoted by R) in the second wave cycle, leading thence
to the formation of a large negative velocity ‘spike’ near the start of the third wave
cycle at T =1660. As we shall see below, this is associated with the beginning of
a secondary or nonlinear wave instability. The negative velocity ‘spike’ is amplified
considerably by time T = 2046 and continues to be an important feature of the
disturbance wavepacket until its breakdown. Subsequent time stages of the greatly
amplified wavepacket at T = 2417 and 2674 are shown in figure 2. Higher wave
harmonics are evident at T = 2417, although the wave structures remain essentially
smooth at this time. Higher harmonic waves have also developed spanwise within the
wavepacket. A catastrophic change to the wavepacket follows. This is marked by the
very rapid breakdown of the wavepacket into a burst of small-scale high-frequency
high-amplitude fluctuations (the incipient turbulent spot) within a distance that is
less than the streamwise size of the disturbance wavepacket by the time T = 2674 in
figure 2(b).

A more detailed depiction of the evolution and breakdown of the u-initiated
wavepacket is presented in figure 3. This figure shows the u-velocity component of the
disturbance wavepacket at the height of y/δ ≈ 0.62, which is the height at which wave
measurements were made in the experiments of Cohen et al. (1991) and Medeiros &
Gaster (1999b). It also corresponds to the height where the dominant u-component
of disturbance fluctuations is generally the largest for both two-dimensional and
three-dimensional waves according to linear stability theory. The contours indicate
that the early u-initiated wavepacket at T = 260 (figure 3a) has distinct maximum
and minimum of u along the centreline, which is consistent with its two-dimensional
depiction in figure 1. From there, the wavepacket evolves into the customary crescent
shape and |u|max decays to about 0.4 % when the wavepacket arrives at X ≈ 690 in
figure 3(b) (which corresponds to the first measurement station in Cohen et al. (1991)
at x = 160 cm). The location of the wavepacket is indicated here by the x-position of
its approximate centre. The u-velocity maxima on both sides of the centreline reflects
the rapidly growing dominance of the oblique waves over the two-dimensional waves.
The shape of the wavepacket is similar to that of Gaster & Grant (1975), although
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Figure 3. Contours of disturbance streamwise velocity u for u-initiated wavepacket at
y/δ ≈ 0.62 at times: (a) T =260; (b) T = 930; (c) T = 1310; (d ) T = 1670; (e) T = 2046;
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positive contours and dotted lines represent negative contours. Minimum (Min.) and maximum
(Max.) contour values are indicated.

the latter results pertain to measurements and computations at points outside the
boundary layer, where disturbance structures tend to be smoother. The wavepacket
is into the early subharmonic stage in figure 3(c) (X ≈ 850) where its |u|max ≈ 0.57 %.
Figure 3(d,e) shows the evolution of the wavepacket through the weakly nonlinear
subharmonic stage leading up to the formation of a distinctive Λ-shaped structure
at its centre. During this stage, |u|max rises to 6.6 % of U∞ in figure 3(f ) (X ≈ 1170).
Weaker Λ-shaped structures in staggered formation may also be broadly observed
in figure 3(e, f ). Figure 3(f,g) spans the strongly nonlinear post-subharmonic stage,
where the subharmonic waves gain more energy and their amplitudes increase rapidly.
Here the dominant Λ-shaped structure (Λ-vortex) at the centre of the wavepacket
warps downstream to form two narrow streamwise velocity streaks in figure 3(g)
(X ≈ 1260). The concentration of negative and positive u-contours defining the two
streaks points to strong streamwise stretching of the flow within the streaks. From
here, the wave structures begin to lose their symmetry and regularity (figure 3h). The
loss of symmetry emanates at the front of the stretched Λ-vortex. The wavepacket
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breaks down into an apparent cluster of smaller-scale structures in figure 3(i, j ). The
weaker outlying waves nevertheless remain highly symmetrical however. The loss of
symmetry may be induced by numerical noise or modelling imperfections. The loss of
structural regularity/smoothness and ensuing breakdown into the nascent turbulent
spot (figure 3h,i ) occurs within a very short distance of 	X ≈ 50 and time interval of
	T ≈ 100, which are about 5 % and 4 % of the total evolution distance and time of
the wavepacket from its initiation, respectively. The incipient turbulent spot in figure
3(i, j ) has a spindle-shaped turbulent core comprising disturbance structures in a wide
range of streamwise length scales. The turbulent core is fringed on both sides by
streamwise-aligned wavelets superimposed on weak oblique remnants of the crescent
waves (see figure 5c). Overall, the incipient spot is shaped like an arrowhead pointing
in the direction of the flow (Cantwell et al. 1978; Henningson et al. 1987).

Figure 4 shows selected snapshots of the u-velocity contours for the corresponding
v-initiated wavepacket for comparison. The early v-initiated wavepacket at time
T = 260 in figure 4(a) differs from the early u-initiated wavepacket in figure 3(a).
The occurrences of umax are found in two distinct symmetrically paired u-velocity
jets at the centre of the wavepacket, whereas the umax occurs on the centreline in
the rear half of the u-initiated packet. Despite these initial differences, the v-initiated
wavepacket evolves to look very similar to the corresponding u-initiated wavepacket
by T = 930 in figure 4(b) (X ≈ 690), except for the presence of a very weak frontal
streak. The two wavepackets have comparable |u|max ≈ 0.4 % and are close to the
threshold of the secondary instability stage. The growth of the wavepacket through
the secondary instability stage and the formation of Λ-shaped structures captured in
figure 4(c,d ) match closely those for the u-initiated wavepacket in figure 3(c–f ), except
in the details. Note the close similarity of the figures at times T = 1310 (figures 3c
and 4c) and T = 2046 (figures 3e and 4d ) in terms of both their disturbance
magnitudes and contour distributions. Finally, figure 4(e) shows the two strong
streamwise velocity streaks that emerge from the two arms of the Λ-structure (vortex)
at time T =2417. The nascent turbulent spot appears to form by T ≈ 2600 at a
position that is marginally ahead of that for the u-initiated spot. It is not possible
for one to be exact about the time and location for the appearance of the nascent
spot since there is no precise criterion defining one. This shows that while the initial
phase contents of wavepackets with similar |u|max do have some effects on their
transition details (see Shaikh & Gaster 1994), the effects appear to be quite small
considering the substantial distances the two wavepackets had travelled from their
initiation point. For discussion purposes, we could regard the two wavepackets as
having approximately the same transition location and time.

We recall that the experiments of Cohen et al. (1991) were conducted for two initial
amplitudes: a small initial amplitude case with |u|max ≈ 0.3 % at x = 160 cm and a
larger initial amplitude case with |u|max ≈ 0.6 % at x = 170 cm (called the S case and
L case, respectively). Both underwent the same transition stages, except in so far as
the stages were brought forward in both space and time for the L case. In the L case,
the wavepacket was plunged immediately into the secondary instability stage, largely
bypassing the linear growth stage.

Cohen et al. (1991) placed the occurrence of the turbulent spots for the S and L
wavepackets at x ≈ 350 cm and 270 cm, respectively. The onset of turbulent spots in the
experiments was ascertained by a major loss of coherence in the ensemble averaging of
the disturbance signals rather than by direct visualization of the disturbance structures.
From figure 3(h–j ), one may locate the corresponding onset of the turbulent spot for
the present simulated wavepackets at around X ≈ 1350 (or x ≈ 310 cm). The value
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Figure 5. Incipient turbulent spot at T = 2674. (a) Instantaneous side profile view based on
u-velocity fluctuations. (b) Instantaneous local skin friction coefficient along the centreline
——–: the bottom line for laminar boundary layer based on (3.1a) and the top line for
fully developed turbulent boundary layer based on (3.1b). (c) Perspective view of u-velocity
fluctuations at height y/δ ≈ 0.62.

is right between the onset locations for the S and L cases. Because the simulated
wavepackets have an intermediate disturbance amplitude of |u|max ≈ 0.4 % between
the two cases, there is clearly good consistency between the present simulation and
the experiments of Cohen et al. (1991) as far as the position for the occurrence of the
turbulent spot is concerned.

The present u- and v-initiated wavepackets reach an amplitude of |u|max = 0.57 %
when they are at X ≈ 850 (see figures 3c and 4c). The distance from that location
to spot formation (at X ≈ 1350) is approximately 	X ≈ 500 or 	x ≈ 115 cm. This is
comparable to 	x ≈ 100 cm in the L case of Cohen et al. (1991) which registered
an amplitude of 0.6 % at its first measurement station at x = 170 cm and suffered a
major loss of coherence marking the onset of the turbulence at x =270 cm.

Figure 5(a) shows the profile view of the u-initiated turbulent spot at T = 2674 and
the instantaneous local wall skin friction coefficient along its centreline. The profile
view shows that the turbulent spot overhangs the wall at its leading edge, which is
consistent with experimental observations. The fluctuations overshoot the boundary
layer in an irregular and intermittent manner and the approximate mean side profile
of the spot is consistent with published data (Wygnanski, Sokolov & Friedman 1976).
The instantaneous local wall skin friction coefficient in figure 5(b) reflects the nature
of intermittency and localization within the turbulent spot, comprising burst regions
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of high skin friction and fluctuations at different scales. The ensemble-averaged skin
friction coefficients for laminar and fully developed turbulent boundary layers (both
assumed to start from plate’s leading edge at X = 0) are plotted for comparison in
figure 5(b). These are calculated in accordance with the established formulae:

Cl
f = 0.664(Rex)

−1/2 (laminar), (3.1a)

Ct
f = 0.455(ln(0.06Rex))

−2 (fully developed turbulence), (3.1b)

where Rex = U∞x/v (see White 1991). The computed local skin friction coefficient
curve adheres very closely to the laminar flow curve outside the domain of the
wavepacket. Within the turbulent spot, the local skin friction coefficient spikes up
very sharply above the laminar values to values characteristic of a fully turbulent
boundary layer. The average wall skin friction value under the spot is somewhat
lower than the mean value for a fully developed turbulent boundary layer. This is
not surprising, however, because here we are having only a single newly-formed
turbulent spot in an otherwise laminar boundary layer, whereas a fully developed
turbulent boundary layer is derived from the saturation of mature turbulent spots.

3.2. Spectral analyses

Flow quantities were analysed by double Fourier transforms (DFTs) in time and space.
The analyses involve fast Fourier transform (FFT) in the time domain and DFT in the
space domain. The bandwidth of the signals before sampling was limited to less than
half of the sampling rate in accordance with the Nyquist criterion. The frequency–
spanwise wavenumber (ω, β) spectra of the disturbance velocity components at
different x-locations along the boundary layer are given in figures 6–7 and 10–11
for the u- and v-initiated wavepackets, respectively. Figures 8 and 12 show the
(α, β) wavenumber spectra of the wavepackets at various time instants/stages in its
evolution – they are derived from the analysis of a rectangular region at y/δ ≈ 0.62
containing the complete wavepacket, when its centre coincides approximately with the
designated X-stations. These spectral plots are presented in terms of frequency and
wavenumbers based on the global length scale δ0, which is the displacement thickness
at the initiation source. The spectral properties of the dominant two-dimensional and
three-dimensional wave modes in the u- and v-initiated wavepackets are summarized
in table 1. The tabulated data are derived primarily from the u-velocity spectra
(which contain the larger part of the wave energy) and presented in terms of the local
displacement thickness length scale δ(x). Since individual wave in Fourier integral
essentially contains zero energy, the term ‘mode(s)’ is used here to connote a narrow
band of waves in the spectral vicinity of the mode(s). The results in columns 2–4 of
table 1 are representative of waves in the linear to very early subharmonic growth
stages, while columns 5–7 are applicable to the primary subharmonic phase. Columns
8 and 9 present properties of the waves in the late-to-post subharmonic stages, where
the leading two-dimensional modes are becoming non-distinct.

3.2.1. Quasi-linear growth

The growth of the wavepackets up to X ≈ 800 is predominantly linear. A detailed
comparison with the predictions of linear stability theory (LST), carried out in
§ 3.3, shows that some low-frequency oblique waves are undergoing weakly nonlinear
growth as early as X ≈ 600 while the bulk of other waves are developing linearly.
More precisely, the growth of the wavepacket may be described as ‘quasi-linear’.
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Figure 6. Spanwise wavenumber β versus frequency ω spectra of u at y/δ ≈ 0.62 (u-initiated
wavepacket) at different locations: (a) X = 690; (b) X = 863; (c) X = 1122; (d ) X = 1208;
(e) X = 1294; (f ) X = 1380. Here δ denotes the local displacement thickness.

Henceforth, we shall use the term quasi-linear to qualify this stage of wavepacket
development. Figures 6(a,b) and 7(a,b) show the frequency–spanwise wavenumber
(ω, β) spectra of the u- and v-velocity components of the u-initiated wavepacket
as it evolves from X = 690 towards the late linear (or early subharmonic) stage at
X = 863. The dominant wave is two-dimensional with frequency ω2D , based on the δ0,
varying from 0.070 to 0.064 over the range. When rescaled by the local displacement
thickness δ(x), the non-dimensional local frequency ω2D

δ is remarkably constant at
0.1. The dominant two-dimensional frequency of ω2D

δ = 0.1 was also recorded for
the dominant two-dimensional disturbance modes in the experiments of Medeiros &
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X 560 690 863 949 1035 1122 1208 1260

Rδ 1311 1454 1625 1705 1781 1854 1924 1965

u-initiated wavepacket, y/δ(x) ≈ 0.62
ω2D

1 0.098 0.100 0.100 0.099 0.099 0.129 –

α2D
1 0.285 0.291 0.297 0.303 0.303 0.289 0.267

ω3D
2,3 – 0.088 0.082 0.075 0.065 0.074 0.077

α3D
2,3 – 0.262 0.244 0.213 0.185 0.160 0.148

β3D
2,3 – 0.182 0.194 0.208 0.218 0.225 0.228

v-initiated wavepacket, y/δ(x) ≈ 0.62
ω2D

1 0.096 0.102 0.100 0.097 0.097 0.099 –

α2D
1 0.267 0.274 0.268 0.273 0.278 0.278 0.275

ω3D
2,3 0.085 0.089 0.084 0.076 0.058 0.059 0.0607

α3D
2,3 0.236 0.245 0.218 0.189 0.167 0.157 0.159

β3D
2,3 0.193 0.196 0.205 0.208 0.205 0.214 0.232

v-initiated wavepacket, y/δ(x) ≈ 1.2
ω2D

1 0.093 0.096 0.099 0.100 0.102 0.100 0.102

α2D
1 0.246 0.265 0.277 0.277 0.279 0.267 0.272

ω3D
2,3 0.080 0.086 0.082 0.082 0.069 0.065 0.061

α3D
2,3 0.199 0.230 0.231 0.219 0.206 0.161 0.154

β3D
2,3 0.206 0.179 0.199 0.209 0.218 0.197 0.202

Table 1. Spectral data of u-velocity fluctuations for the dominant two-dimensional and three-
dimensional modes. Data presented are based on the local displacement length scale δ(x).

Gaster (1999b). A corresponding ω2D
δ ≈ 0.09−0.10 can also be discerned in the results

of Cohen et al. (1991) for their most energetic two-dimensional waves.
Figures 6(a) and 7(a) show that the oblique waves are spectrally contiguous

with the dominant two-dimensional mode. Broadband oblique wave modes are also
evident in the spectral plots of the cited experiments. The very weak low-frequency
components of oblique waves (not part of unstable linear spectrum) may be caused
by parametric amplification of background noises/waves according to Kachanov &
Levchenko (1984). As the u-initiated wavepacket evolves into the late linear or early
subharmonic stage (figures 6b and 7b), both the dominant two-dimensional mode and
its contiguous spectrum of oblique wave modes are amplified in unison. In particular,
the oblique wave spectra begin to extend towards lower frequency. This is also true
for the spectra of the v-initiated wavepacket in figure 10(a,b). Indeed the u-velocity
spectra of both wavepackets also reveal the presence of some very low-frequency
components. They are not replicated in the v-velocity spectra, however, because the
low-frequency v-velocity fluctuations have very low energy at this early stage.

3.2.2. Subharmonic wave growth

The dominant two-dimensional frequency of ω2D
δ ≈ 0.1 (from the linear stage) was

maintained well into the subharmonic stage in the experiments of Cohen et al.
(1991). The same could also be said for the numerous experiments conducted by
Medeiros & Gaster (1999b) in their study on subharmonic wave production in
evolving wavepackets. The results of the present simulations in figure 15(a) for both
the u- and v-initiated wavepackets also reflect this preferred frequency ω2D

δ ≈ 0.1 for



350 K. S. Yeo, X. Zhao, Z. Y. Wang and K. C. Ng

F
re

qu
en

cy
0.15

0.10

0.05

0
–0.6 –0.4 –0.2 0 0.2 0.4 0.6

0.15

0.10

0.05

0
–0.6 –0.4 –0.2 0 0.2 0.4 0.6

F
re

qu
en

cy

0.15

0.10

0.05

0
–0.6 –0.4 –0.2 0 0.2 0.4 0.6

0.15

0.10

0.05

0
–0.6 –0.4 –0.2 0 0.2 0.4 0.6

F
re

qu
en

cy

Spanwise wavenumber

0.15

0.10

0.05

0
–0.6 –0.4 –0.2 0 0.2 0.4 0.6

Spanwise wavenumber

0.6

0.4

0.5

0.3

0.2

0.1

0
–0.6 –0.4 –0.2 0 0.2 0.4 0.6

(a) (b)

(c) (d)

(e) (f)

Figure 7. Spanwise wavenumber β versus frequency ω spectra of wall-normal disturbance
velocity v at y/δ ≈ 0.62 (u-initiated wavepacket) at different locations: (a) X = 690; (b) X = 863;
(c) X = 1122; (d ) X = 1208; (e) X = 1294; (f ) X = 1380.

the dominant two-dimensional mode over the bulk of the evolution history, except
perhaps in the late subharmonic stage, where ω2D

δ appears to rise sharply in the case
of the u-initiated wavepacket.

The subharmonic phase is characterized by the emergence and growth of a
dominant oblique wave pair whose frequency ω3D

2,3 is less than the dominant two-

dimensional (fundamental) frequency ω2D
1 . Figures 6(a–c) and 10(a–c) show how a

distinctive and dominant subharmonic oblique wave pair gradually emerges from the
expanding three-dimensional spectra, contiguous to the dominant two-dimensional
mode, for the two wavepackets. The dominant subharmonic oblique wave pair acquires
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comparable amplitude with the fundamental two-dimensional wave by X ≈ 1035.
Table 1 and figure 15 summarize the characteristics of the triad of waves, comprising
the fundamental two-dimensional wave and the oblique wave pair, as they evolve
from the early subharmonic growth stage (X ≈ 860) through to the late subharmonic
stage (X ≈ 1208). The component waves of the triad are marked by subscript 1 for
the fundamental two-dimensional wave and subscripts 2 and 3 for the oblique wave
pair, as shown in figure 6(c,d ).

Three-wave subharmonic resonance between the fundamental two-dimensional
wave and the three-dimensional oblique wave pair is governed by the following
frequency and wavenumber conditions:

ω2D
1 = 2ω3D

2,3, α2D
1 = 2α3D

2,3 and β2D
1 = 0 = β3D

2 + β3D
3 . (3.2a–c)

Figure 15(b,c) shows that the frequency and wavenumber ratios, ω3D
2,3/ω

2D
1 and

α3D
2,3/α

2D
1 , vary from about 0.9 to 0.6 as the u- and v-initiated wavepackets

evolve downstream through the subharmonic instability stage from X ≈ 860–1208
(x = 200–280 cm). They are not close to the value of 0.5 that one would expect from
the fulfilment of the subharmonic resonant wave condition (3.2). Nonetheless, the
wavepackets appear to be spontaneously evolving towards resonance, although exact
resonance between the dominant two-dimensional wave and the three-dimensional
wave pair in accordance with wave relations (3.2) is not quite achieved even as the
waves enter the late subharmonic stage at X =1208 (x = 280 cm). Frequency ratios
ω3D

2,3/ω
2D
1 ≈ 0.55 may be deduced from figures 4 and 8 of Cohen et al. (1991) for their

S and L cases respectively in the late subharmonic stages.
Medeiros & Gaster (1999b) observed that the subharmonic frequency ratios

ω3D
2,3/ω

2D
1 were greater than the value of 0.5 in almost all the wavepackets that

they had studied, which were initiated with different phase contents. These appear to
tend towards the factor of 0.5 as the oblique wave pairs strengthened downstream,
but never quite reaching the value (see their figure 4). The spectral peaks of their
three-dimensional waves have spanwise wavenumber βδ ≈ 0.2, which is in very good
agreement with the same for the primary subharmonic stages (X = 863–1035) of
simulated wavepackets given in table 1 at the same height of y/δ ≈ 0.62. The
corresponding βδ ≈ 0.25 for the S case of Cohen et al. (1991). In general, the present
simulation results at y/δ ≈ 0.62 show a slowly increasing spanwise wavenumber βδ

for the dominant three-dimensional mode as the wavepackets evolve downstream.
For the larger-amplitude L-case, Cohen et al. (1991) quoted streamwise wavenumbers
of α2D

1 ≈ 0.3 and α3D
2,3 ≈ 0.16 for the dominant two-dimensional and three-dimensional

waves respectively in its subharmonic stage at x = 230 cm – these were estimated by
fitting LST solutions to experimental data. These compare quite well with the values
of α2D

1 ≈ 0.27–0.30 and α3D
2,3 ≈ 0.15–0.18 given in columns 7 and 8 of table 1 for the

corresponding subharmonic stage (X = 1122–1208, x = 260–280 cm); it is pertinent to
note that the L-case wavepacket arrived at the same subharmonic stage at a smaller
x = 230 cm owing to its larger initial amplitude.

The above results suggest that subharmonic wave production in wavepackets may
not be simply explained on the basis of Craik resonance (3.2). The theory of Herbert
(1988) provides for frequency and wavenumber detuning when resonance is not exact.
A well-defined detuned pair of frequency peaks (ωC ± 	ω) had been observed for
ribbon-excited waves in the experiments of Kachanov & Levchenko (1984). More
recently, Sartorius et al. (2006) found that positively frequency-detuned periodically
driven subharmonic modes might be more strongly amplified than those without
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detuning. However, Medeiros & Gaster (1999b) had observed that there was no
obvious evidence of conjugate frequency and/or wavenumber pairing in the spectra
of the many wavepackets that they had studied, which could plausibly explain their
role in subharmonic wave production. We have also found no corroborative evidence
of frequency and/or wavenumber detuning in the results. It is possible that detuned
instabilities might not work well in the complex and highly transient wave environment
of a wavepacket, where a large continuum of two-dimensional/three-dimensional
waves compete for dominance, as opposed to the more controlled environment of
selective periodic excitations.

Figure 15(d ) compares the downstream phase speeds of the dominant three-
dimensional and two-dimensional modes in the u- and v-initiated wavepackets. The
ratios c3D

2,3/c
2D
1 ≈ 1 over the whole subharmonic stage (largest deviations from 1 occur

at station X = 1035 in all three sets of results). This would not be surprising if the
wave triads had satisfied the subharmonic resonant wave condition (3.2), since that
would ensure that the condition c3D

2,3/c
2D
1 = 1.0 is automatically fulfilled. However,

the converse need not be true. The condition c3D
2,3/c

2D
1 ≈ 1.0 is fairly well satisfied

throughout the subharmonic stage even though the frequency and wavenumber ratios,
ω3D

2,3/ω
2D
1 and α3D

2,3/α
2D
1 (figure 15b,c), are substantially higher than the resonance

value of 0.5. This suggests that a sustained critical-layer-driven mechanism, a weaker
condition than triad resonance given by (3.2), may be the source of subharmonic
wave production in the boundary layer.

3.2.3. Post-subharmonic and breakdown phase

The dominant subharmonic modes in the u- and v-initiated wavepacket surpass
the fundamental two-dimensional wave in amplitude by X ≈ 1035. The next stage
of evolution is marked by the generation of low-frequency u-velocity fluctuations
through nonlinear interaction, which is evident in figures 6(c,d ) and 8(b). Thus, one
may note that the interaction of the dominant oblique waves 2 and 3 gives rise to the
difference modes 4 and 5, (0, ± 2β3D

2 , 0) = ± (α3D
2 , β3D

2 , ω3D
2 ) ∓ (α3D

2 , β3D
3 , ω3D

3 ), which
have near-zero frequency and spanwise wavenumbers ( ± 2β3D

2 ) that are twice those
of the dominant subharmonic modes 2 and 3. This process is further enhanced by
the increasing strength of the dominant subharmonic modes. The wavepacket is now
entering the post-subharmonic stage, whereby the interaction between the difference
modes (0, ± 2β3D

2 , 0) results in near-zero and zero wavenumber and frequency mode
(0,0,0) that may be discerned in figures 6(e), 7(e) and 8(c). This stage is distinguished
by the sideway proliferation of higher harmonics along the β axis in figures 6(d,e),
7(d, e) and 8(b, c), and most clearly captured in figure 8(c). This is essentially
an oblique-wave (β-)cascade as there is no concomitant expansion in the higher
harmonics of the streamwise wavenumber α and frequency ω. The β-cascade was
observed in the experiments of Breuer et al. (1997). What follows becomes increasingly
difficult to decipher in detail – at this stage, it is no longer possible to discern a distinct
dominant two-dimensional mode.

The strengthening of the near-zero frequency modes within the wavepacket leads
to increasing three-dimensional local distortion of the base flow (see figure 2.16 in
Holmes et al. 1996, and Lundbladh et al. 1994). It is associated with the rapid growth
of the Λ-vortex (a structure of some temporal permanence) at this stage. The Λ-
vortex convects with the wavepacket, so that to an external observer the distortion
would appear as a spatially amplifying localized three-dimensional modulation of the
base flow field. The further development of the Λ-vortex into a loop (or hairpin-like)
vortex (Perry, Lim & Teh 1981) due to stretching by the base flow and vortex
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Figure 8. Streamwise wavenumber α versus spanwise wavenumber β spectra of u at y/δ ≈ 0.62
for the u-initiated wavepacket at times: (a) T = 1300 (X =850); (b) T = 2046 (X = 1125); (c)
T = 2417 (X = 1260); (d ) T = 2674 (X = 1410). X denotes the approximate streamwise position
of the centre of the wavepacket.

self-induction, and the formation of ring-like vortices possibly due to a Crow-type
instability (Crow 1970; Moin, Leonard & Kim 1986; Rist, Muller & Wagner 1998;
Borodulin, Kachanov & Roschektayev 2006), lead eventually to the breaking down
of hitherto regular wavepacket structures.

The wavepacket breakdown that follows is marked by further strengthening of
the low-frequency modes and ultimately by the rapid proliferation of higher ω and
α modes generated by evolving sums and differences of extant wave modes. The
v-velocity spectrum at X = 1380 (x = 320 cm) in figure 7(f ) shows a strong presence
of high-frequency waves, clearly indicating that the breakdown of the wavepacket had
already begun. Figure 9(c) gives the corresponding frequency power spectrum. The
spectral expansion to higher frequency is not so obvious in the u-velocity spectrum in
figure 6(g) (compared to figure 7f ). This is because a large part of the u-disturbance
wave energy is concentrated in the low-frequency components at this stage, as may
be seen in figure 9(b,c). Figure 9(c), on the other hand, shows a more even spread of
v-disturbance wave energy across the frequency spectrum of the incipient spot. The
flattish spread of the (α, β) spectrum in figure 8(d ) indicates that the energetic u-
disturbances in the incipient turbulent spot are longish/streaky in the stream direction.
This is in accord with the u-velocity visualization of the incipient turbulent spot in
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Figure 9. Power spectra of u and v as a function of frequency ω along the centreline at
y/δ ≈ 0.62 at downstream locations: (a) X = 863; (b) X = 1208; (c) X = 1380. Disturbance
velocity: streamwise u, ········; wall-normal v, ——– (u-initiated wavepacket).

figure 3(i, j ) at y/δ = 0.62 and at other heights. In contrast, the v- and w-velocity
disturbances of the incipient spot comprise largely fine-scale structures at all heights.

Except for differences of details, selected spectra of the v-initiated wavepacket in
figures 10–12 reveal closely similar spectral evolution as the u-initiated wavepacket.
Figures 10(d,e) and 12(c) show clearly the development of near-zero frequency
longitudinal (α ≈ 0) u-velocity fluctuations at twice the spanwise wavenumber
of the dominant oblique wave pair. The expansion of the β-spectrum follows
(figure 11c,d ) closely on the heels of this process. For both the u- and v-initiated
wavepackets, significant loss of structural regularity (and presence of high-frequency
fluctuations) is clearly evident by X ≈ 1380 or x ≈ 320 cm (see figures 3i, 7f and
11d ). The corresponding breakdown stage in the S-case experiment of Cohen et al.
(1991) occurred further downstream at x ≈ 350 cm due to its slightly lower initial
amplitude.

3.3. Comparison with linear stability theory

In this section we examine the development of the wavepacket in the context
of LST. Figure 13 compares the spatial growth of selected two-dimensional and
three-dimensional wave modes in the simulated v-initiated wavepacket against the
predictions of LST. The point data represent the spectral amplitudes of waves of
fixed frequency ω and spanwise wavenumber β (based on the global length scale δ0)
obtained from the spectral analyses of u-velocity signals across the domain (spanwise)
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Figure 10. Spanwise wavenumber β versus frequency ω spectra of u at y/δ ≈ 0.62 (v-initiated
wavepacket) at different locations: (a) X = 690; (b) X = 863; (c) X = 1035; (d ) X = 1208;
(e) X =1294; (f ) X = 1380. Here δ is the local displacement thickness of the boundary layer.

at the height y/δ ≈ 0.62. The corresponding curves are spatial growth curves derived
from LST, duly shifted for an optimal match with the wavepacket data. Results
of four spanwise wavenumbers β =0.0, 0.05, 0.125 and 0.22 and four frequencies
ω =0.04, 0.05, 0.06 and 0.07 are presented.

Figure 13(a) shows that there is good agreement between the spectral wave
amplitudes and LS predictions for two-dimensional wave modes at all the frequencies
from linear to the early subharmonic stages from X = 450 to 863 (Reδ = 1172–1626).
Indeed, the agreement extends well into the principal subharmonic growth stage
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Figure 11. Spanwise wavenumber β versus frequency ω spectra of wall-normal velocity v
at y/δ ≈ 0.62 (v-initiated wavepacket) at different locations: (a) X = 1035; (b) X = 1208;
(c) X = 1294; (d ) X = 1380.

(X ≈ 950–1208) for all except the frequency of ω =0.07, where more apparent
deviation may be observed for X > 863.

Figure 13(a) also compares the growth of the most amplified or dominant two-
dimensional waves in the wavepacket (marked by black circular dots) against the LS
prediction for a mode with a fixed non-dimensional local frequency of ω2D

δ =0.099,
applied from X = 640–1208 (Reδ ≈ 1400–1900). The frequency ω2D

δ ≈ 0.099 incidentally
corresponds to the average frequency of two-dimensional modes along the ‘maximum
linear amplification envelope’ given in figure 4 of Jordinson (1970) (ω2D

δ ≈ 0.102–0.096
for the Reδ range). The good agreement shows that, after a short initial phase of
fairly rapid growth away from the source, the dominant two-dimensional waves in the
wavepacket evolve more or less along the growth trajectory of the maximum linear
amplification envelope. The initial growth phase (up to X ≈ 640) may be influenced
by the spectral composition of the wavepacket at initiation. This tendency towards
maximum linear amplification appears to be generic. It may thus explain why the
dominant two-dimensional waves in the simulated wavepackets (in §§ 3.2.1–3.2.2)
maintained a nearly constant local frequency of ω2D

δ ≈ 0.1 over the bulk of their
evolution histories, as well as the persistent observations of the same frequency in
the wavepacket experiments of Medeiros & Gaster (1999b) and Cohen et al. (1991).
Cohen (1994) had earlier found that LST accurately predicted the growth of the most
amplified two-dimensional waves in his experimental wavepackets. However, the
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Figure 12. Streamwise wavenumber α versus spanwise wavenumber β spectra of u at
y/δ ≈ 0.62 for the v-initiated wavepacket at times: (a) T = 930 (X = 690); (b) T =2046
(X = 1125); (c) T = 2417 (X = 1260); (d ) T = 2788 (X = 1420). Here X denotes the approximate
streamwise position of the centre of the wavepacket.

specific frequency of ω2D
δ ≈ 0.1 and its approximate constancy over the experimental

range were not discussed by him. Cohen’s LS results also took into account the slow
divergence of the boundary layer, whereas the present LS results were based on the
locally parallel flow approximation.

Figure 13(b–d ) shows the spatial growth of three-dimensional waves at fixed
spanwise wavenumber β . In general, spatial growth of mildly oblique waves (β = 0.05,
figure 13b) follows quite closely the predictions of the LST well into the subharmonic
stage. The most amplified oblique waves have β ≈ 0.125 (figure 13c). The mode with
β = 0.125 and ω = 0.04 amplifies by a factor of nearly 102 between X =450 and
1208 (Reδ = 1174–1924), and is in fact spectrally close to the most amplified oblique
wave mode at X = 1208 in the late subharmonic stage (see figure 10d ). Waves in the
lower-frequency band around ω ≈ 0.04 (β = 0.125) exhibit signs of deviating from the
linear growth curves as early as X ≈ 600 (well upstream of its upper neutral points).
Hence, the development of the wavepacket is not fully linear even at this early growth
stage. The evolution of these waves into the most amplified three-dimensional wave
modes in the subharmonic stage may be seen to be a progressive rather than an
abrupt event.
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Figure 13. Comparison between the computed (symbols) and theoretical (lines) downstream
growth of waves at various frequencies ω and spanwise wavenumbers β: (a) β =0;
(b) β = 0.050; (c) β = 0.125; (d ) β = 0.220. Symbol/line: �/– – – (ω = 0.04); �/––––– (ω = 0.05);
	/· - · - · (ω = 0.06); × / (ω = 0.07); �/ (ωδ = 0.100/0.099). Theoretical results are
based on linear theory. Here ωδ is the frequency based on local displacement thickness δ.

Figure 13(d ) shows that the growth of the highly oblique waves (β = 0.22) in the
wavepacket is in accordance with LST up to about X ≈ 863 (Reδ ≈ 1626). By this
time, they are already downstream of their branch II neutral points. Their growth
accelerates considerably, however, during the ensuing subharmonic stage, reaching
factors in the low 10s by the end of the stage. The most amplified oblique wave
here (β = 0.125, ω = 0.04), on the other hand, lingers close to the branch II neutral
surface, on the upstream (linearly unstable) side, during the subharmonic stage. The
above accords well with Cohen’s (1994) findings that a group of highly amplified
three-dimensional wave modes exhibit weakly nonlinear growth very early on in the
linear growth stage, when most other waves are growing linearly. The rapid growth of
highly oblique modes downstream of their branch II neutral points (as in figure 13d )
has also been highlighted by Cohen (1994).

Velocity fluctuations of selected wave modes in the evolving wavepacket are
presented in figure 14. Corresponding LS eigenfunctions are also presented for
comparison (a single scaling factor was used for all the three velocity components of
an LS eigenfunction). In general, there is remarkably sharp agreement between the
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Figure 14. Comparison between the computed (symbols) and theoretical (lines) amplitude
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β = 0.125; (c) X = 1294, ω =0.03, β = 0.125. Symbol/line: �/—— (u); �/- - - (v); 	/-·-·-·- (w).
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velocity fluctuations extracted spectrally from the wavepacket and corresponding LS
eigenfunctions in the quasi-linear and early subharmonic stages. Figure 14(a,b) shows
that the agreement between modal wavepacket fluctuations and LS eigenfunctions is
very good even for the most highly amplified oblique wave modes at β = 0.125 over
the whole of the subharmonic stage from X ≈ 863–1208. The differences between the
two, however, become more obvious as the wavepacket enters the post-subharmonic
stage at X =1294 (figure 14c). The close agreement between the wavepacket and LS
eigenfunctions for the most amplified oblique modes had been noted by Cohen (1994).

3.4. Subharmonic wave generation

Corke & Mangano (1989) was probably the first to observe experimentally that three-
dimensional plane disturbances could grow nonlinearly to significant amplitudes
in a Blasius boundary layer despite not satisfying the subharmonic resonant-triad
condition (3.2). Similar observations were subsequently made by Corke, Krull &
Ghassemi (1992) and Williamson & Prasad (1993a, b) for wake flows. Wu & Stewart
(1996) proposed a phase-locked interaction theory to explain this growth phenomenon
and applied it to nonlinear interactions between two-dimensional and oblique
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Rayleigh waves. While weaker than a resonant-triad, the phase-lock mechanism could
nevertheless promote the rapid growth of oblique wave modes that have the same
wave speed c3D = c2D as the fundamental two-dimensional mode. This is essentially a
critical-layer-based mechanism. More recently, Wu, Stewart & Cowley (2007) extended
the phase-locked theory to Tollmien–Schlichting waves in a Blasius boundary layer.
According to this theory, the interaction between a two-dimensional planar mode
and a pair of oblique waves could result in the super-exponential growth/decay of
the oblique waves if there is a small but non-zero mismatch in their wave speeds
c3D ≈ c2D . Moreover, for any given two-dimensional planar mode (α2D, 0) and oblique
wave pair (α, ± β) that satisfy the Squire’s wavenumber condition

α̃ =
√

α2 + β2 = α2D (to the leading order), (3.3)

there is an ‘optimal’ phase speed mismatch which gives the maximum rate of super-
exponential growth. The relaxed matching conditions allow the new phase-locked
mechanism to operate under much less restrictive conditions than that required for
triad resonance (3.2). Significantly, the new phase-locked theory shows that a single
two-dimensional mode can act as a catalyst for the super-exponential growth of a
broad spectrum of three-dimensional waves that share ‘approximately’ the same phase
speed. Recent experiments by Borodulin, Kachanov & Koptsev (2002a, c) in which
a single two-dimensional primary wave was found to amplify a broad spectrum of
three-dimensional background disturbance waves having about the same phase speeds
seem to support the theory. The new phase-lock theory of Wu et al. (2007) thus offers
a mechanism that may explain the broadband nature of nonlinear wave growth and
selection in a boundary layer. Nonetheless, the catalytic role of the fundamental two-
dimensional wave in transferring energy from the mean flow to the three-dimensional
waves is not an entirely new idea, and had been discussed by Orszag & Patera (1983)
in their numerical study of wall-bounded shear flows. It is also pertinent to note that
Herbert’s (1983, 1988) theory of parametric resonance presumed an ‘equilibrium’ two-
dimensional fundamental wave. Broadband amplification of three-dimensional waves
by the two-dimensional fundamental wave had also been noted in the experiments of
Kachanov & Levchenko (1984).

Although the analysis of Wu et al. (2007) had been carried out for plane waves,
the theory is clearly relevant to the wavepackets here. The spectral results of the
preceding section (see figure 15d ) show that the x-phase speeds of the dominant
two-dimensional and three-dimensional modes of the wavepackets track each other
fairly closely (c3D/c2D ≈ 1.0) over much of the nonlinear growth stages, in fact, until a
distinctive dominant two-dimensional mode could no longer be clearly discerned from
the spectral data. Figure 15(e) further shows that the approximate match in phase
speeds is also corroborated by corresponding fulfilment of the Squire wavenumber
condition (3.3) to a high degree over the nonlinear growth stage from X ≈ 949–1260
for both the u- and v-initiated wavepackets. The agreement (or degree of mismatch) is
largely within 10 % for phase speeds and 5 % for Squire wavenumber condition (3.3)
for the u-initiated wavepacket and 10 % for the v-initiated wavepacket. Measurement
errors associated with the identification of spectral peaks are typically quite small
at around 1–2 %. Phase-speed differences of up to 10 % may also be observed in the
experimental results of Borodulin et al. (2002c), as reproduced in Wu et al. (2007).
Figure 15(f ) shows that the propagation angles θ of the dominant three-dimensional
modes evolve progressively towards 60◦ as the u- and v-initiated wavepackets
develop through the subharmonic stage, reaching values of about 56◦ and 57◦ in the
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late-to-post subharmonic stages at X ≈ 1260. This indicates that the dominant phase-
locked waves, subjected to wavenumber condition (3.3), are approaching a state of
exact triad resonance (3.2). The latter case has been studied by Mankbadi, Wu &
Lee (1993). The almost linear behaviour/growth of the fundamental two-dimensional
waves through the subharmonic stage, as earlier observed in §§ 3.2–3.3, also appears
to be consistent with its catalytic role in Wu et al.’s (2007) theory. The present
results thus lend support to the theory proposed by Wu et al. (2007), and point to
the possibility that phase locking is the generic and dominant mechanism for the
nonlinear production of subharmonic waves in wavepackets in a Blasius boundary
layer. The broadband growth of three-dimensional modes may also be seen in the
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many spectral plots presented earlier, where the spectral peaks identify the dominant
modes.

Subharmonic wave production has also been studied experimentally by Medeiros &
Gaster (1999b) for wavepackets in a Blasius boundary layer. While probing further
the mechanisms for subharmonic wave production, they found that the removal
of Fourier wave components associated with the dominant subharmonic modes
from their artificially synthesized initiating pulses had practically no effects on the
subsequent production or emergence of subharmonic waves in the wavepackets.
This holds for wavepackets with different initial phases. Medeiros & Gaster
(1999b) inferred that the occurrence of the dominant subharmonic modes in the
wavepackets might have proceeded from a deterministic cause that was not yet fully
understood.

The typical pulse-excitation source generates a rich two-dimensional/three-
dimensional wave spectrum. The continuity of c and α̃ immediately implies that
there is a neighbourhood of three-dimensional waves around any two-dimensional
wave mode that could fulfil the weak matching requirements of Wu et al. (2007)
for phase locking. The neighbourhood of three-dimensional waves could be quite
large (to fairly large β) because, according to LST, the contours of c and α̃

are roughly aligned in the same direction in the (α, β) plane at β =0. This
enhances the opportunity for approximate phase locking among two-dimensional
and three-dimensional waves to occur, although the flow condition must also be
right for approximate phase locking to drive the rapid growth of selected three-
dimensional waves. Since three-dimensional waves are continually being produced
through nonlinear wave interactions among existing waves, approximate phase locking
provides a relatively accessible route for the growth of the three-dimensional spectrum.
Nonlinear wave interactions and phase locking may thus work together to nurture the
development of the three-dimensional spectrum, including promoting the growth of
three-dimensional waves that may not even be present in the original spectrum at the
time of source initiation. The present simulations show that the early subharmonic
wave modes had evolved ‘progressively’ and ‘contiguously’ from the wave spectrum
of the quasi-linear stage, instead of being a separate and distinct development.
The early/incipient subharmonic modes are in fact quite close spectrally to the
fundamental two-dimensional mode in terms of both frequency and streamwise
wavenumber (figures 7b and 9a). The spectral proximity makes them potential
candidates for approximate phase locking; indeed their c3D

2,3/c
2D
1 ≈ 1.0 and α̃/α2D

1 ≈ 1.1
at X = 863 and y/δ =0.62 in figure 15(d, e). The frequency and wavenumber ratios
of the dominant three-dimensional/two-dimensional waves (ω3D

2,3/ω
2D
1 and α3D

2,3/α
2D
1

respectively) decrease from a high value of ∼0.9 (whilst adhering to the phase-lock
conditions c3D

2,3/c
2D
1 ≈ α̃/α2D

1 ≈ 1.0) and approach the resonant value of 0.5 only in
the late subharmonic stage (figure 15b, c). In this scenario, the presence of the
dominant subharmonic frequency components in the initial source spectrum of the
wavepackets may no longer be essential for those waves to subsequently emerge in
the subharmonic stage – since they may apparently be derived through progressive
evolution from a spectral neighbourhood of the dominant two-dimensional mode
via phase locking. This may account for the persistent production of the dominant
subharmonic waves in the experiments of Medeiros & Gaster (1999b), even though
they had purposefully excluded those lower-frequency modes from the initial source
spectra of the wavepackets. They had also observed that the fundamental and
subharmonic spectral bands were not entirely separate in their experiments. Moreover,
in Medeiros & Gaster (1999b) the wavepackets had evolved through a highly extended
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linear stage – where it was likely that the lower-frequency components of the dominant
subharmonic modes might even be initially suppressed had they been present. The
spontaneous evolution of the dominant two-dimensional and oblique wave modes
towards C-resonance (3.2) also suggests that such resonance may be an attractive
state.

3.5. Vortical structures in the evolving wavepackets

In this section, we examine the vortical structures of the evolving u-initiated
wavepacket. Figure 16(a) depicts the streamwise disturbance vorticity field ζx in a
(y, z)-plane passing through the approximate centre (X ≈ 680) of the wavepacket at
time T = 930 in the quasi-linear stage. Because of the non-slip wall condition, the
disturbance vorticity of the opposite signs is continuously being produced at the wall
under the wavepacket. The ζx vortical system, comprising essentially two vortical
stacks at this time, strengthens and expands sideway as the wavepacket convects
forward. The sideway expansion of the ζx vortical system is driven by its interaction
with the wall in the presence of the velocity gradient of the basic flow. The absence of
a sustaining mechanism in the upper boundary layer, where the mean shear gradient
tends to zero, limits the upward expansion of the ζx vortical system. At some point
in the early subharmonic stage, a new vortical system emerges at the centre (see
figure 16b), which is weak initially but grows quickly to rival the strength of the
original vortical system outside. The most intense ζx vorticity belongs to the top central
vortical pair, which is associated with the primary Λ-vortex. Corresponding spanwise
vorticity (ζz) fields in the central plane (z = 0) are given in figure 17(a,b). Figures 16 and
17 have been plotted with a greatly magnified vertical scale to illustrate the developing
vortices. If the vertical axis is correctly scaled relative to the horizontal scale, the
organized vortices will compress into very thin vorticity sheets, with thickness-to-size
ratio as small as 1/100. This shows that the evolving wavepacket physically comprises
growing disturbance structures that are generated from the wall by viscosity in
very thin overlapping vorticity sheets of alternating signs, arranged in stacks of two
or three.

Vortex sheets are inherently unstable structures and have a tendency to roll up
into vortical lumps under perturbation (Kelvin–Helmholtz-type instability). Some of
the vorticity sheets in figure 16(c) exhibit vorticity concentrations that are suggestive
of possible sheet instabilities. Evolving further downstream, the sheet vortices that
develop in the central region are stretched by the large-amplitude low-frequency and
low streamwise wavenumber u-velocity fluctuations (figure 3g) and the base flow as the
wavepacket goes into the post-subharmonic phase. This results in the intensification
of the ζx component of vorticity and the consequential roll-up of the vorticity sheet
near the centre into streamwise-aligned vortices of small cross-section (see figure 16c).
Mutual induction among these longitudinal vortices in the central region precedes
the breakdown of the wavepacket into the incipient turbulent spot in figure 16(d ),
where a non-symmetric system of concentrated vortices (small cross-sections) may be
seen. This region forms the core of the turbulent spot, while the outer vortex system
(remnants of TS waves) continues to linger along the two sides of the turbulent
spot as weak waves. Finally, figure 17(c) shows the high shear layer in the central
plane formed at the post-subharmonic stage, which is then followed by wavepacket
breakdown in figure 17(d ).

Figure 18 shows the changing flow structures in the vicinity of the critical layer of
the v-initiated wavepacket as it evolves from the quasi-linear stage to the early post-
subharmonic stage. The streamtraces depict the total velocity field (U + u − c, V + v)
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Figure 16. Contours of streamwise vorticity ζx at Y–Z plane passing through the approximate
centre of the wavepacket: (a) T =930; (b) T = 1670; (c) T = 2417; (d ) T = 2674. Solid and
dashed lines represent positive and negative contours, respectively. Minimum and maximum
contour values are indicated (u-initiated wavepacket).
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Figure 17. Contours of spanwise vorticity ζz along the centreline (Z =0) of the wavepacket:
(a) T = 930; (b) T = 2046; (c) T = 2417; (d ) T = 2674. Solid and dashed lines represent positive
and negative contours, respectively. Minimum and maximum contour values are indicated
(u-initiated wavepacket).
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Figure 18. Streamtraces of velocity field (U +u−c, V +v) at the central plane Z = 0 at times:
(a) T = 930; (b) T = 2046; and (c) T = 2418 (v-initiated wavepacket). Wave speed c = 0.36.
Critical-layer height: .

that would be seen by an observer travelling at the average wave speed (c ≈ 0.36)
of the dominant phase-locked waves. The velocity field of the linear wavepacket at
T = 930 in figure 18(a) reveals structures indicative of Kelvin’s cat’s eyes (see Drazin &
Reid 1981). The closed streamlines usually associated with the cat’s-eyes pattern are
not present here because the base flow is slowly diverging and the disturbance is
not exactly streamwise periodic. The propagation of the individual vortices (labelled
by letters A–D) with time may be easily tracked from the convection speed and the
elapsed time. Figure 18(b) shows the progressive coalescence of vortices B and C
during the subharmonic stage, where the external field of vortex B may be seen to
merge with the external field of vortex C to form streamtraces that encircle the cores
of the two vortices. This process coincides with the formation of the primary Λ-vortex
in the wavepacket. Their eventual coalescence results in the formation of a strong
upward-directed jet (figure 18c) that transports/ejects lower-momentum fluid across
the critical layer high up into the upper boundary layer in the post-subharmonic
stage to form the well-known high shear layer in figure 17(c). The jet is clearly quite
narrow spanwise according to figure 16(c), being generated between the two arms of
the Λ-vortex (figure 3g).
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Figure 19. Vortical structures in u-initiated wavepacket: (a) side and plan views of Λ-vortex
in the later subharmonic stage at T = 2046 (λ2 = − 1.0 × 10−6); (b) side view of incipient
turbulent spot at T = 2674 (λ2 = − 5.0 × 10−6).

Figure 19(a) shows two views of the Λ-vortex in the later part of the subharmonic
stage at time T = 2046, visualized in terms of vortical structures computed according
to the −λ2 criterion of Jeong & Hussain (1995). The vortical blob near the front
of the Λ-vortex suggests strong self-induction that plausibly leads to pinching and
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subsequent creation of ring vortex (see Moin et al. 1986; Rist et al. 1998). Finally,
figure 19(b) shows the side view of the incipient turbulence spot at time T = 2674
as the amalgamation of a very large number of tube-like lifting/inclined vortical
structures rising from the wall in the strong shear region of the boundary layer. The
fore section of the spot comprises the larger-scale vortices with higher lifting rates,
interspersed with smaller vortical formations. These vortices curve up sharply towards
the vertical at the end of the incline to form a ‘forest’ of vortical blobs or puffs. The
disturbance structures become increasingly fine towards the rear of the turbulent
spot, where the spot thins down to a low mat of predominantly fine structures. The
thinning down towards the rear may be explained in terms of the rapid decay of the
vortices in the upper reaches of the boundary layer (where the mean shear gradient
tends to zero) as the wavepacket convects forward, whereas vortical structures lower
down in height decay more slowly due to interaction with the mean shear gradient of
the near-wall flow.

4. Concluding summary
This study examines the evolution and breakdown of two pulse-initiated

wavepackets (a u-velocity pulse and a v-velocity pulse) in a Blasius boundary layer
via DNS. The basic flow parameters are modelled after the experiments of Cohen
et al. (1991). The pulse-initiated wavepackets have a broad contiguous spectrum of
two-dimensional and three-dimensional waves. The early growth of the wavepackets
shows good overall agreement with the linear wavepacket theory of Gaster (1975). The
three-dimensional spectrum extends contiguously to lower frequency and streamwise
wavenumber as the wavepackets evolve into the subharmonic stage. The start of
the subharmonic stage is marked by the emergence of a distinctive oblique wave
pair with frequency ω3D

2,3 <ω2D (the subharmonic modes) within the developing
three-dimensional spectrum. The incipient subharmonic modes are spectrally close
in terms of their frequency and streamwise wavenumber to the fundamental two-
dimensional mode. These have values that are substantially larger those anticipated
for resonant–triad interaction (3.2). The subharmonic frequency ω3D

2,3 decreases towards

the resonance value of 0.5ω2D as the dominant subharmonic and fundamental modes
appear to evolve progressively towards resonance through the subharmonic stage. The
dominant subharmonic oblique and fundamental two-dimensional waves have closely
matching phase speeds (c3D

2,3 ≈ c2D
1 ) over much of the subharmonic growth stage,

indicating that the growth of the subharmonic modes is governed by a critical-
layer mechanism. The dominant subharmonic modes grow rapidly to dominate
over the fundamental two-dimensional mode as the wavepacket evolves through
the subharmonic stage.

The fundamental two-dimensional frequency remains nearly constant at ω2D
δ ≈ 0.1

over the linear and subharmonic stages. A comparison with LST shows that after
an initial phase of growth, the dominant two-dimensional waves in the wavepackets
evolve along the growth trajectory of the maximum linear amplification envelope.
The dominant two-dimensional frequency ω2D

δ ≈ 0.1 observed in the present study
and in the experiments of Medeiros & Gaster (1999b) is thus associated with the
frequency of maximally amplified two-dimensional waves along the linear envelope
in the applicable range of Re. A comparison with LST also shows that the lower-
frequency waves in a band of spanwise wavenumbers about β ≈ 0.125 (βδ ≈ 0.18–0.23
for Rδ ≈ 1500–1900) begin to amplify nonlinearly, albeit weakly, quite early during
the linear stage. The growth of the wavepacket is thus not fully linear even at a fairly
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early stage. These waves become the most dominant waves in the wavepackets during
the subharmonic stage. On the whole, velocity fluctuations within the wavepackets
agree remarkably well with the eigenfunctions of LST even for the most amplified
three-dimensional waves in the subharmonic stage.

The strongly nonlinear (post-subharmonic) stage is marked by interaction between
the waves of the dominant oblique wave pair, resulting in the growth of near-zero and
zero frequency longitudinal (streaky) structures at twice the spanwise wavenumber
( ± 2β3D

2,3 ), strong distortion of the local base flow by the strengthening primary
Λ-vortex and rapid expansion of the spanwise wavenumber (β) spectrum. This is
a relatively brief stage compared to the preceding subharmonic stage. The final
breakdown of the wavepacket, as indicated by rapid spectral expansion and loss of
regularity in the wave structures, occurs within a short distance and time duration
of about 5 % and 4 % of the total evolution distance and time from initiation,
respectively. A large part of disturbance energy in the incipient turbulent spot is
concentrated in a band of very low-frequency (ω ≈ 0), streamwise streaky (α ≈ 0)
u-velocity fluctuations, which strongly distort the base flow under the turbulent spot.
The v- and w-velocity fluctuations of the incipient turbulent spot contain relatively
lesser energy, which are more evenly distributed across the higher harmonics of
frequency and wavenumbers. The u- and v-initiated wavepackets evolve in broadly
similar fashion and break down close to the same location. All key aspects of the
present simulations have been corroborated by the experiments of Cohen et al. (1991),
Breuer et al. (1997) and Medeiros & Gaster (1999b).

Rather than triad resonance, spectral data derived from the present simulations
suggest that the subharmonic growth of wavepackets is governed primarily by
the approximate matching of the phase speeds (c) and Squire wavenumbers (α̃)
of the dominant subharmonic and two-dimensional modes, in accordance with
a recent phase-lock theory proposed by Wu et al. (2007). The agreement in c
and α̃ is largely within 10 % over the bulk of the subharmonic stage. The key
feature of Wu et al.’s (2007) theory is that a two-dimensional planar mode may
promote the rapid amplification of a broad spectrum of three-dimensional waves
that share approximately the same phase speed as the two-dimensional mode. This
is a significantly weaker condition than the triad resonance condition (3.2). The
approximate phase-locking mechanism offers a relatively accessible route by which the
three-dimensional wave spectrum could expand or regenerate. The present simulations
show that the dominant oblique wave modes in the primary and late subharmonic
stages originated from an incipient state/mode of substantially higher frequency
in the spectral neighbourhood of the fundamental two-dimensional mode. This may
explain why the dominant subharmonic waves invariably appeared in the experiments
of Medeiros & Gaster (1999b), even though they had meticulously excluded the
components of those waves from the source spectra of the wavepackets.

Finally, a visualization reveals that the evolving wavepacket comprises disturbance
structures that are generated by viscosity from the wall in very thin overlapping sheets
of vorticity of alternating signs, in stacks of two or three. Subharmonic instability
begins with the formation of new vortical structures at the centre of the wavepacket.
Streamwise stretching during the late and post-subharmonic stages promotes the roll-
up and intensification of the vorticity sheets into dense longitudinal vortices in the
central region. Their mutual induction or unstable interaction precedes the breakdown
of the wavepackets. The creation and growth of the primary Λ-vortex is marked by
the progressive coalescence of a pair of cat’s-eye-like vortices at the critical layer.
Their eventual coalescence leads to the formation of the well-known high-shear layer
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in the post-subharmonic stage. The incipient turbulent spot is the amalgam of a
very large number of streamwise-aligned lifting and raised vortices, which form an
arrowhead-like structure pointing in the direction of the flow.
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